Characterizing the Distribution of High Frequency Returns by Realized Quantile-based Measures Preliminary draft Please do not cite without permission

نویسنده

  • Charles S. Bos
چکیده

The risk associated with financial returns is commonly measured through an estimator of the variance. Variance estimators based on high frequency returns are susceptible to the influence of jumps, and these should be accounted for. This article proposes to measure the uncertainty and other characteristics of return series through a quantile-based approach, which automatically is robust to outliers in the data. The quantile-based measures for location, dispersion, skewness and kurtosis can be used for testing whether underlying returns follow a prespecified distribution as well. A high frequency time series of returns on IBM stock is used for clarifying the possibilities of a quantile-based approach for measuring and predicting risk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting the Return Distribution Using High-Frequency Volatility Measures

The aim of this paper is to forecast (out-of-sample) the distribution of financial returns based on realized volatility measures constructed from high-frequency returns. We adopt a semi-parametric model for the distribution by assuming that the return quantiles depend on the realized measures and evaluate the distribution, quantile and interval forecasts of the quantile model in comparison to a...

متن کامل

Lean Enough

DRAFT – Please do not cite or quote without permission (comments welcome)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010